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ABSTRACT

Variability of solar power is a key driver in increasing the cost of integrating solar power into the electric grid because additional
system resources are required to maintain the grid’s reliability. In this study, we characterize the variability in power output of six
photovoltaic plants in the USA and Canada with a total installed capacity of 195MW (AC); it is based on minute-averaged data
from each plant and the output from 390 inverters.We use a simplemetric, “daily aggregate ramp rate” to quantify, categorize, and
compare daily variability across these multiple sites. With this metric, the effect of geographic dispersion is observed, while
controlling for climatic differences across the plants. Additionally, we characterized variability due to geographical dispersion
by simulating a step by step increase of the plant size at the same location. We observed maximum ramp rates for 5, 21, 48, and
80MWAC plants, respectively, as 0.7, 0.58, 0.53, and 0.43 times the plant’s capacity. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Amajor challenge in integrating high penetrations (>20%) of
solar and wind energy rests in the grid’s ability to cope with
the intrinsic variability of these renewable resources. Germany
and Denmark, respectively, already generate 9% and 22% of
their electricity from wind and solar power and have found
means to address these challenges, viz. by relying on strong
grid interconnections with other countries and flexible
thermo-electric generators to provide backup when necessary
[1,2]. Although such high levels of penetration may be a
decade or two away in most other operating regions, we must
find measures to manage variability, especially when such
mitigation approaches are unavailable or ineffective. Further,
besides assuring reliability, effective integration of high levels
of solar and wind power can reduce the “hidden” costs and
emissions associated with larger than necessary backup
capacity.

A mechanism of markets operating on different timescales
maintains the balance between supply and demand in most

electricity grid systems. First, there is the day-ahead market,
wherein hour-by-hour generation is scheduled on the basis
of load forecasts for the next day. Then, there is the real-time
market that, in the New York Independent System Operator,
opens 75min before the operating hour and serves to balance
the latest intra-hour load forecasts (typically 15min). These
two comprise the so-called “energy markets.” To maintain
reliability of the grid, additional markets exist to deal with
short-term fluctuations that the energy markets do not capture,
such as the demand response and ancillary services markets.
The ancillary services, in turn, consist of “reserves” and
“regulation,” where the spinning and non-spinning “reserves”
accommodate unexpected outages of lines or generators
(contingencies), whereas “regulation” manages short-term
variability in demand and supply.

Variability of solar resources is subdivided in long-term
and short-term fluctuations. Studies of the former focus on
the diurnal cycle and the required portfolio of generators in
the grid (typically with hourly data). Previous researches
assessed the renewable penetration limits of current grid
systems [3–6] and scenarios with energy storage [7].
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Short-term variability studies use second-to-minute aver-
aged data to investigate the effect on operating reserves and
frequency regulation. When the short-term variability of
solar and wind power is no longer masked by the load vari-
ability, grid operators must increase system operating
reserves and regulation services to maintain the grid’s
reliability. This approach, in turn, raises the operating costs
associated with integrating photovoltaic (PV) renewable
energy into the grid. The actual increase in cost depends
upon various factors, including the grid’s size and inherent
flexibility, and the aggregated variation of all the renewable
energy in a grid-balancing area (General Electric, 2010).

With the projection of large-scale PV plants (>250MW)
becoming significant generators on the grid in the near
future, system operators started discussions on how to deal
with the plant’s inherent variability. The backbone of these
discussions is based on assessments of plant variability
gleaned from irradiance sensors data or relatively small
(~5MW) existing plants. Extrapolating these point source
data to multi-megawatt plants may not be valid because the
effect of geographic dispersion from large scale plants is not
completely understood yet. Because of the potential impact
of the uncertainty arising from these studies, it is important
to analyze the ramp rates recorded from operating multi-
megawatt plants and compare them with published findings.

To what extent renewable electricity sources will affect
the grid is restrained by their inherent variability and the
extent to which their output can be forecasted. Low
short-term variability and high predictability of ramps are
desirable for minimizing the extent of regulation and the
amount of reserves required.

In scenarios of high solar and wind penetration on the grid,
generation-side variability is expected to dominate the load
variability and drive the need for higher level of regulation.
Forecasting can play a crucial role here; expected ramps can
be dealt with by controlling the dispatch of conventional
generators. Several vendors utilize weather models to develop
1–48h forecasts for PV plants on varying time-averaging
periods with sufficient accuracy to aid grid operators in main-
taining reliability. However, short-term cloud-driven changes
in solar plant output (tens of seconds to minutes) are hard to
forecast. As more renewables become part of the generator
portfolio, characterizing variability and forecasting will
become key components of balancing of supply and demand
of power on the grid. In this study, we start with the character-
ization of solar plant output variability which is a contributor
to the aggregated output variability of all plants in a balancing
area. It will then be followed by a forecasting and power flow
analysis study.

A central term in this study is the “ramp rate” (RRΔt),
defined herein as the change in power output of a PV plant
or irradiance sensor over two consecutive periods of the
duration Δt. In this study, we use power outputs (or irradi-
ance values) that are averaged over 1min. We also use
1min as the time interval (Δt) for ramp rate calculations.
The units used for the RR are on a per-unit basis, that is,
1 p.u. = rated plant AC capacity and for irradiance sensors
1 p.u. = 1000W/m2.

2. PREVIOUS STUDIES ON SOLAR
VARIABILITY

The short-term variability of solar power has recently garnered
much attention because the installed capacity is increasing
very rapidly, and the technology is on its way to become a
significant part of the generator portfolio (power capacity) of
several countries, notably Germany (12%, 2010), and
Spain (4.3%, 2010) [2,8]. Fine time-resolution data are needed
for these studies because hour-by-hour data do not capture
such variability [9]. Early studies relied on irradiancemeasure-
ments [10,11], converting them to clearness indexes as a
universal indicator. This index embodies the quotient between
global horizontal irradiation at ground level (GHIground) and
the extraterrestrial irradiation (GHIet).

There are many ways in which variability of power out-
put can be characterized. A common approach is to use the
standard deviation of power output (or clear sky index)
changes for a certain averaging interval over a period of
time, as described in [12]. The highest ramps are some-
times described by looking at the 99.7th percentile value,
which is, in a normal distribution, three standard deviations
from the mean (3s). Mills et al. found the 1min standard
deviation and 99.7th percentile values to decrease from,
respectively, 0.08 and 0.58 for a single site, to 0.02 and
0.09 for all 23 sites studied (20–440 km apart).

More recently, output variability was derived from
satellite imagery by Hoff and Perez, allowing the collec-
tion of high-frequency data for a large number of points
on the map [13]. Although the Perez model is bound by its
one-dimensionality and its inability to deal with evolving
cloud fields, it gives a useful relationship between the
“zero-correlation crossover distance” and the sampling
interval for short-term variability.

Previous studies have shown that geographical smooth-
ing already occurs when comparing an irradiance sensor’s
ramps with those of a small 30 kW plant [14]. This is in
line with findings from Mills et al. and Perez et al. where
the correlation of irradiation at pairs of sites was found to
decrease with distance. Some studies that employ irradi-
ance ramps as a proxy for plant output ramps disregard
the fact that many utility-scale PV plants have inverters
with limited capacity, limiting the PV power they can feed
to the grid. For example, if irradiance reaches above clear-
sky levels because of reflection from clouds, it is included
as a ramp rate, whereas the actual inverter’s output may not
exceed its own power limit. Also, irradiance sensors do not
capture the influence of the modules’ temperature and
spectral response on power output unless special adjust-
ments are factored in.

Observed or modeled ramp rates from published studies on
variability using multiple data points or single large-scale
plants are summarized in Table I. Five of these nine studies
looked at the variability of operating PV plants. Wiemken
et al. assessed the 5min-averaged output changes of 100 PV
systems across Germany (600� 750km2) [15]. Hansen inves-
tigated the variability of a single 4.6MW utility-scale plant in
Springerville, AZ, on timescales of 60, 15, 4, and 1min, and
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10 s [16]. A “cloudy” winter day was chosen to analyze
fluctuations in output, resulting in ramp rates of up to 0.46,
0.3, 0.5, 0.45, and 0.3 p.u., respectively.

At the time of writing, four publications included
output data from multi-megawatt systems: two reported
on the 4.6MW Springerville PV plant [17,16], one on a
25MW tracker plant in Florida [18], and one on a
13.2MW tracker plant in Nevada [19].

Our study is based on data from six utility-scale PV
plants with an AC capacity between 5 and 80MW,
located in the southwest of the USA and southeast of
Canada (Table II). These plants utilize First Solar’s CdTe
thin-film modules and BOS Technologies. The goal of
this study is to identify a way to estimate the variability
of planned projects (even beyond 80MW) and present
this to the independent system operators. To determine
what characterization of variability in generator output
is most useful for independent system operators, we
interviewed a renewable integration specialist at the
California Independent System Operator [20]. He agreed
that a variability classification of days would be useful
in projecting what effect a planned project will have on
balancing of supply and demand on the grid. In this
study, we propose a method to do this.

3. DAILY AGGREGATE RAMP RATE

In previous publications [16,21,12,22], researchers quantified
variability using different methods for single days, qualita-
tively denoting them as, for example, a very cloudy day or a
highly variable day. The expected ramp rates from a normally
operating utility-scale PV plant are a function of timescale,
time of day, the plant’s shape and size as well as cloud cover-
age and movement. To account for impact of cloud coverage
and movement, we present a quantitative metric called the
daily aggregate ramp rate (DARR) to characterize daily vari-
ability in a utility-scale plant. This metric can be used to com-
pare observed ramp rates from plants in different locations and
of different sizes by selecting days with similar DARR values.

A DARR allowing the categorization of days based on the
observed minute-averaged variability is defined as

DARRmin ¼
X1440
t¼1

It � It�1j j
C

with It being the minute-averaged irradiance (W/m2) of a
single plane of array (POA) irradiance sensor at time t, and
C the constant equal to 1 sun (1000W/m2). A single irradiance
sensor is chosen for thismetric rather than the plant’s output so
that the plant’s size and shape does not influence theDARRmin.

On a perfectly clear sky day, one can expect aDARRmin of
~2 p.u., that is, the irradiance climbs to ~1000W/m2 at solar
noon and then drops back to 0W/m2 in the evening. The
most extreme days show aDARRmin of 70–80 p.u. Days were
classified into five categories, ranging from very stable days
(Category 1) to highly variable ones (Category 5).

• Category 1: DARRmin< 3
• Category 2: 3≤DARRmin< 13
• Category 3: 13≤DARRmin< 23
• Category 4: 23≤DARRmin< 33
• Category 5: 33≤DARRmin

Table I. Data types of published variability studies and the observed extreme ramp rate for all data points.

Study Data type Data points Time scale (smallest) Distance (km)
Observed extreme
ramp rate (p.u.)

[15] PV systems (1–5 kW) 100 5min Few–750 0.05
[27] Irradiance 9 1min 1.3–5 0.212
[17] PV systems: 121–228.5 kW

(part A) and 4.6MW (part B)
3 trackers (A) and
1 fixed (B)

Part A: 10min;
part B: 10 s

110–280 Part A: 0.41 per 10min;
part B: ~0.50 (1min data)

[23] PV systems (0.12–5.6 kW)
and irradiance

52 1min Few–1000 —

[18] PV system (25MW) 6 blocks (trackers) 10 s — 0.2
[12] Irradiance 23 1min 20–440 0.2
[28] Irradiance 4 1min 19–197 0.12 (based on 5min data)
[16] PV system (4.6MW) 1 10 s — ~0.50 (1min data)
[22] Irradiance and satellite

(virtual networks)
24 20 s — —

[19] PV system (13.2MW) 1 (tracker) 1 s — 0.50 (1min data)

One-minute-averaged data are used, unless otherwise noted. Ramp rates for irradiance data are denoted as fraction of 1 sun (1000W/m2=1 p.u.).

Table II. Overview of sources of photovoltaic plant data used in
this study.

AC capacity [MW] State Country
No. of days

in data

80 South Ontario Canada 560
48 South Nevada USA 369
30.24 North New Mexico USA 233
21 Southeast California USA 537
10 South Nevada USA 547
5 South Ontario Canada 200
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The categories are somewhat arbitrary but are expected
to be representative. The DARR metric has limitations
regarding the fact that peak clear-sky irradiance values
vary throughout the year, as well as the length of day
(winter days have lower clear-sky peak POA irradiance
and are shorter than summer days). Because of this, the
first DARR category was set to include days with DARR
3 instead of DARR< 2. Figure 1 illustrates a Category 1
day and Category 5 day.

We note that completely overcast days show very small
ramps (sometimes DARRmin< 1), so, like days with a clear
sky, they fall under Category 1. To account for overcast
days, a special sub-category was created and presented in
the results.

The distribution of days over DARRmin categories indi-
cates the variability observed at a specific location.
Depending on the size of a planned project, this information
would be helpful for grid operators in assessing the system
reserves required on the grid. A closer look at fluctuations
in plant output for eachDARRmin category is given, thereby

providing insight into the anticipated ramp rates from plants
of different sizes.

We note that because this metric summarizes ramp rates for
a whole day, the character of individual 1min ramps is lost.
Thus, when we consider two dips in irradiance measurements
of the samemagnitude (A andB), they can contribute the same
amount to theDARRmin, but dip A could be much steeper than
dip B (for instance, because of a higher cloud velocity). Also,
because the DARR is based on a minute-by-minute basis, it
does not capture higher frequency events.

4. RAMP RATES AND GEOGRAPHIC
DISPERSION

In studying the effect of PV systems on the grid, we must
consider variability in the output of all grid-connected PV
systems located in a system operator’s service area. Several
studies have detailed the effect of geographic dispersion on
the output variability of many smaller systems or irradi-
ance sensors. Thus, Wiemken et al. found that the highest
5min ramp rate for a single system was 52% of system
capacity, whereas 100 systems, together totaling 243 kW,
showed ramp rates up to only 5% of the total capacity [15].
Murata et al. [23] introduced the term “output fluctuation
coefficients”: the ratio between the maximum observed
ramp rate in a certain time window, over the standard
deviation of ramp rates in that same time window. As the
number of systems increases, the coefficient reaches an
asymptote depending on the width of the time window
and the season. Besides that, pair-wise correlations of PV
system ramp rates were derived from the data; they were
shown to be close to zero, even for distances around
50 km. In fact, 1min ramp rate correlations already had
declined to 0.12 for two inverters within a single plant [21].
As ramp rate correlations on a per-minute basis drop
significantly over sub-kilometer distances [21], multi-
megawatt PV systems also exhibit some degree of
geographic dispersion. In fact, when plants extend beyond
the size of fast-moving cumulus clouds, variability is
reduced as the clouds cover only part of the array. Another
effect is that clouds often do not move fast enough to
completely cover a plant from one time interval to the next,
as we will discuss later in this section. With a 290 and
500MW plant under construction, it is important to assess
what variability can be expected from them. Other multi-
megawatt plants were shown to exhibit extreme (minute)
ramp rates of up to 50% for a 4.6MW system [16] and
45% for a 13.2MW system on a “highly variable
day” [21]. Kankiewicz et al. [18] assessed variations in
the output of a 25MW two-axis tracker system in Florida,
recording minute-averaged ramp rates of up to ~20%
during a single day’s output. Of course, comparing these
PV plants is questionable because the systems differ in
shape, size, and panel orientation. Furthermore, the clouds’
shape, size, and velocity are not specified, so climatic
conditions cannot be compared; nevertheless, the trend
clearly suggests that their size is important.

Figure 1. Minute-averaged irradiance sensor measurements at
the 21MW plant in California for (a) a “Category 1” day and (b) a
“Category 5” day, both in April 2011. The DARRmin is 2.4 and

53.1p.u., respectively.
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Hoff and Perez introduced the term “dispersion factor”
(D), a dimensionless variable capturing the relationship
between PV fleet length (L), cloud velocity (V), and the
used time interval (Δt). It is defined as the number of time
intervals needed for a cloud to pass over the entire PV fleet
in excess of unity [13].

D ¼ 1þ L

VΔt

Three regions of geographic density were defined
(crowded, limited, and spacious) and one optimal point,
where D equals the number of systems (N) in the fleet.
An example is presented to validate the model for the
Springerville plant, where Hansen [16] observed a 50%
one-minute ramp rate. Assuming a size of 420m by
420m for the 4.6MW plant (L= 420m) and Δt = 60 s, the
authors concluded that with an average wind speed of
3.5m/s (D becomes 3), the observed relative output vari-
ability would be 60%. However, extreme ramp rates typi-
cally are known to occur with high cloud velocities
(>20m/s). If a modest value of 7m/s was used for their
data validation, the model would predict a relative output
variability of ~80% for this plant.

A simple estimate of extreme ramp rates for a single
plant with capacity Pcap is made by looking at how much
the plant’s time-averaged output �PΔt is reduced from being
completely unshaded to being (partly) shaded. For rectan-
gular-shaped plants, the highest ramp rates can be expected
when a hypothetical cloud, bigger than the array itself, is
moving in the direction parallel to the shortest side, L of
the plant [meters], with a velocity V in m/s. The power
output P(t) will change linearly, with a slope P [MW/s]:

P
� ¼ �Pcap

pclear � pshadeð ÞV
L

where pclear and pshade are the per-unit power outputs under
zero-shading and fully shaded-conditions (typically 1 and
~0.15, respectively, depending on spectral response of
modules). The power output will continue to drop until
the whole array is shaded (P(t) =Pcap� pshade), yielding
the following equation:

P tð Þ ¼ Pcap �max pshade; pclear � pclear � pshadeð ÞV
L

t

� �

We note that for events with L/V>Δt, the cloud cannot
cover the whole array within a single time interval, thus the
per-unit ramp rate is less than avg(pclear, pshade). Averaging
the power output over time interval Δt, we obtain extreme
ramp rates RRΔt,max [MW]:

RRΔt;max ¼ Pcap � pclear � �PΔt

with,

�PΔt ¼
XΔt

t¼1
P tð Þ

Δt

For L/V>Δt, the average power output is equal to P(Δt/2)
and the maximum per-unit ramp rate becomes

RRΔt;max

Pcap
¼ pclear � pshadeð ÞV

2L
Δt

Figure 2 and throughout the rest of the paper, RRΔt,max

is plotted on a per-unit basis with time interval Δt= 60 s,

Figure 2. Extreme ramp rate (RR) as a function of cloud velocity (V) and the shortest side of plant (L) for a hypothetical cloud moving
over the array in direction parallel to L. Parameters pclear and pshade, respectively, are set to 1 and 0.15, and the interval over which

power is averaged is 60 s.
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as a function of V and L. The parameters pclear and pshade,
respectively, are set to 1 and 0.15, on the basis of observed
plant outputs under those conditions. Smaller plants
L < 500 mð Þ already show a steep increase of RRΔt,max at
small cloud velocities, whereas for plants with shortest side
L> 60V, the graph depicts a more linear dependency on V,
with its slope decreasing as L increases. For the 80MWAC

plant, which measures approximately 2000m by 2200m,
cloud velocities of 30m/s may yield ramp rates of up to
0.4 p.u. or 32MW.

The upper boundary of V is chosen based on the cloud
speeds of 95 km/h (26.4m/s) that were reported by Perez
et al. for a single day in the atmosphere radiation measure-
ment network [22] and from cloud velocities reported by
others [24]. We hypothesized that the ramp rates from the
simple model overestimate the observed ramp rates
because of the following shortcomings.

First, complete shading of arrays with L> 3500 m by a
single cumulus is rare because single cumuli become less
common with increasing size [25]. In addition, the model
assumes that the incoming cloud has a perfectly flat front
and uniform obliqueness, exerting the highest possible
ramp rate at the prevailing cloud velocity, although such
clouds are unlikely to occur for high values of L. Also, in
measuring plant output, we must consider that there is a
probability related to the location of a cloud shadow at
the beginning of an interval. Finally, shortcomings exist
in the model related to plant morphology and prevailing
wind directions, as it cannot assess other shapes of PV
plants besides rectangular ones. Accordingly, the ramp
rates illustrated in Figure 2 are likely to overestimate those
actually observed. We are now refining this model by
including distributions of cloud size and accounting for
different shapes of plants.

Because plants are of multi-megawatt size and are
constructed with a uniform megawatt-array approach as
discussed in the succeeding section, it is possible to describe
the effect of geographic dispersion at a single site for
different sized plants. Similar to Kankiewicz et al. [18] and
Lenox [19], where variability was described for a stepwise
increasing amount of capacity, our study follows an
approach called the “inverter shells method”, wherein vari-
ability is described with an increasing number of 0.5MW
inverters. We delineate this method in Section 7.2.

5. DATA

Data were collected for six multi-megawatt First Solar PV
plants, four of which are located in the US southwest and
two in Ontario, Canada. We collected minute-averaged
power plant output, single inverter output, and data from
weather stations (with GHI and POA irradiance sensors).

Construction of these plants covers multiple phases, in
which blocks of power come online as they are completed.
Total capacity therefore is built up in steps until the whole
plant is completed. Unfortunately, not all plants were
online for a full year at the moment of data collection.

However, the first half of 2011 (1 January– 30 June)
sketches a good comparative picture of plant variability
at different sites.

Plant output data are stored in units of kilowatt from
one or more energy meters per plant. Other plant data
include data from weather stations that provide ambient
temperature, barometric pressure, wind speed/direction,
precipitation, and GHI and POA irradiance in watts per
square meter (�2%).

Besides the complete plant outputs, data were collected
at the inverter level (~0.5MWAC units) allowing us to
model sub-plant output, as we show later in the inverter
shells method. The plant structure is as follows: a plant
consists of multiple power conversion stations located in
the center of PV arrays of about 1.2MWDC. A power
conversion station consists of two ~500 kWAC inverters
that feed a single transformer. Each inverter is connected
to four combiner boxes that congregate currents from
14 harnesses. In turn, each harness comprises 15 strings
of 10 modules. The dimension of the sub-array connected
to a single inverter is typically 50m latitudinally by
250m longitudinally (Figure 3).

6. METHODOLOGY

As a first step, we employed minute-by-minute POA irradi-
ance data from a central weather station to calculate the
DARR values for each plant day. We excluded days with
data errors from the categorization to prevent them from
skewing the distribution. In the following, the assessment
of plant output variability is outlined.

6.1. Plant output variability

The data were processed in MATLAB (version 7.11.0) using a
modular approach, as summarized in the flowchart (Figure 4).

First, the data were checked for consistency and
completeness, and the days with data errors were flagged
during the data validation process. The next module was
to create cumulative distribution functions (CDFs) and
histograms of ramp rates for a selected plant-month,
including the DARR averages to indicate variability in that
month. Then, times when power output >0 kW were
defined as daytime. Finally, the ramp rates of these output
values were calculated and normalized with plant capacity.
Finally, the results were plotted in logarithmic-scale histo-
grams and cumulative distribution functions.

6.2. Inverter shells method

An “inverter shells method” is introduced to investigate
reduction in variability due to geographical dispersion with
increasing plant sizes. This method has an advantage over
studying ramp rates from different sized plants located
in completely different areas because weather conditions
within the same plant will be the same (as will be the
modules, inverters, and transformers).
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Starting with the output profile of an array connected to
a single inverter (0.5MW), shells of inverters are added in
each step, resulting in multiple CDFs (Figure 5). We kept
the aspect ratio of each of the “sub-plants” the same
(1:5), thereby counteracting the effect on ramp rates from
a prevailing wind direction.

In the 48MW plant, eight steps were performed in this
fashion, with the last step counting eight by eight arrays
with 0.5MWAC inverters, that is, a capacity of 32MWAC.

7. RESULTS

7.1. Daily aggregate ramp rate

Using the five DARR categories introduced in Section 4,
we characterized the variability at each plant. Table III
details the resulting distribution, with incomplete data sets

denoted with “(i)”. It reveals that the irradiance ramp rates
differ with the prevailing climate at each location. The
21-MW plant showed 49% “Category 1” days in 2011.
The 80MW and 5MW plant located in Ontario, Canada,
showed only 16 and 17% of low variability days. How-
ever, only about a quarter of those “Category 1” days
indeed were clear sky days, whereas the rest was overcast.

It should be noted that the irradiance database for the
30.24MW plant was not complete in April and June
2011. This likely resulted in fewer clear sky Category 1
days than actually occurred.

7.2. Irradiance sensors versus plant output

Many studies employed irradiance-sensor data as a proxy
for plant output (Table I). However, this method is not
yet validated with measured plant data. With First Solar’s
original data, we investigated how ramp rates observed

Figure 4. Schematic overview of data processing, starting with raw output from the plant and irradiance measurements from the cen-
tral data server. The results are depicted as histogram plots and cumulative distribution functions (CDFs).

Figure 3. Outline of the 1MW (AC) arrays at the 48MW PV plant. The inverters are the lowest level at which data are collected.
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from single and dispersed irradiance sensors at POA
compare with the plant’s ramp rates. In Figure 6, we
display the per-unit output of these sources for a 35min
time span at the 48MW facility on 19 May 2011 (the red
dots in Figure 5 show the locations of the five irradiance
sensors within the plant).

The per-unit output of five irradiance sensors aggre-
gated is a much better indicator of the overall plant output
than that of a single sensor, even though the values above
and close to 1 p.u. deviate more from plant output. As we
introduced earlier, this happens because the AC output
capacity of the inverters is limited and a momentary higher
irradiance does not result in higher AC output. Accord-
ingly, it is appropriate to clip irradiance of each sensor to
1000W/m2 if that level is surpassed.

Figure 7 illustrates the improvement by using “clipped”
irradiance data, where we compare the output data for the
48MW plant for January–June 2011 with a single irradiance
sensor, five sensors aggregated, and five sensors aggregated
after they were clipped individually. Overall, the unclipped
data overestimate the plant’s highest ramps by 5–10%
whereas the clipped version approximates within a 3% error.

Figure 5. Top view of the 48MWAC plant. Every rectangle represents an array connected to a single inverter (0.5MWAC). The shells method
is outlined starting from step 1 in the bottom-right corner. With every step, variability is characterized as the plant grows bigger. Red dots

represent weather stations where irradiance sensors are located.

Table III. Daily aggregate ramp rate category distribution for a single irradiance sensor in all photovoltaic plants studied.

Year: 2010 2011 (i)

Capacity (MWAC) 21 30.24 (i) 48 (i) 10 80 (i) 21 30.24 48 10 80 5
Category 1 clear sky (%) 41 19 43 32 4 49 16 34 33 4 4
Category 1 overcast (%) 1 1 2 2 10 0 0 1 1 12 12
Category 2 (%) 29 39 20 28 33 21 34 24 24 37 39
Category 3 (%) 16 28 19 19 19 16 23 17 17 20 20
Category 4 (%) 7 4 9 10 14 10 13 12 13 13 10
Category 5 (%) 7 7 8 8 20 4 14 11 13 14 16
No. of days 336 67 176 349 358 201 166 193 198 202 200

All the data are expressed as per cent of total number of days with clean data (percentages may not total 100 due to rounding). The bottom row displays the

number of days with clean data for these locations.

Figure 6. Plant output (1 p.u. = 48MWAC) compared with the
output of a single irradiance sensor, five aggregated sensors,
and five aggregated sensors “clipped” down to 1000W/m2.
The “smoothing effect” of adding more sensors is apparent as
the plant’s output curve is approached. However, it also shows
that both the single and aggregated irradiance sensor curves

overestimate the plant’s peak output.
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7.3. Inverter shells method

Figure 8 displays how variability declines as an increas-
ingly bigger sub-plant at the 48MW plant is monitored.
In eight steps, the sub-plant’s output is increased from
0.5 to 32MWAC using the inverter shells method intro-
duced earlier.

As the plant grew from 0.5 to 32MW, the standard
deviation of daytime 1min ramps decreased from 0.059
to 0.032 p.u. This drop is not as significant as observed in
Mills et al., where the standard deviation decreased from
0.08 to 0.02 p.u. when variability from one site was com-
pared with that of 23 sites. This is expected, because the
distance between sites in the latter study is much bigger
than the distances between inverters in the single plant
studied here. The observed maximum ramp rate fell from

0.87 to 0.67 p.u., whereas RR60s,3s, that is, at 0.997 proba-
bility dropped from 0.56 to 0.24 p.u. This ramp rate reduc-
tion observed within a single PV plant is in line with
findings from previous studies [26,21]. The lower reduc-
tion in RR60s,max compared with RR60s,3s reflects the effect
of the occurrence of cloud velocity and its influence on
ramp rates of different sized plants, as shown in Figure 2.
We note, however, that a cloud velocity of 7m/s already
suffices to cover the plant with L= 400 m in the last step
(32MW). In the future, we will be able to apply this tech-
nique to bigger plants and obtain a better idea of how ex-
treme ramps are reduced beyond L=VΔt.

7.4. Observed plant ramp rates

The common practice for showing the magnitude of ramp
rates is by plotting histograms or CDFs of absolute values.
Figure 9 shows a histogram of daytime ramp rates
observed at the 5 and 80MW plants. Both are located in
the same area of Ontario, Canada, so weather difference
effects are expected to be minimal. The 80MW plant
exhibits relatively less variation compared with the 5MW
plant. Because of symmetry observed in histograms, it is
suitable to use CDF curves for displaying ramp rates;
the latter approach will be used throughout the rest of
this paper.

Some second-by-second data were made available for
the 5 and 80MW plants, and Figure 10 gives an overview
of the observed power output ramps from these plants in
daytime of May 2011. The second-by-second data show
lower relative ramps compared with minute data, as was
concluded by previous studies [19,21].

After the DARR categories were defined, plant ramp rates
were analyzed for each separate category. Figure 11 shows
the occurrence of ramp rates for each category at the
80MW plant in 2011; the highest ramp rate observed

Figure 7. Cumulative probability distribution showing the highest
0.5% ramp rates observed from the whole plant (48MWAC), a
single irradiance sensor, five sensors, and the five sensors clipped
down to 1000W/m2 for all daytime data of January–June 2011.

Figure 8. Cumulative probability curve showing the effect of plant
size on observed extreme ramp rates as a fraction of plant capacity.
Results are obtained from applying the inverter shellsmethod to the

48MW plant, using data from January to June 2011.

Figure 9. Ramp rate histograms for the 5MW and 80MW plant,
March 2011. The horizontal groupings that are apparent in the
regions of high ramp rates indicate the number of occurrences, with
the lowest representing one occurrence, then two, three, and so on.
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(RR60s,max) was 0.47 p.u. or 38MW/min. Although we do
not know what the cloud velocity was at that time, this value
is in line with the theoretical maximum observed in Figure 2.

As would be expected, we observe that the curves shift to
the right with increasing DARR category. Still, the highest
observed ramp is not from a “Category 5” day; in this case,
it happened on a “Category 4” day. This is because the
DARR summarizes overall variability only for a single day
and does not account for shorter times with marked variabil-
ity. The DARR therefore gives a probabilistic indication of
what ramps can be expected on that particular day. Our next
logical step was to plot another cumulative probability distri-
bution, now with the plant output data from all sites. The
results, obtained on the most variable days (Category 5:
DARRmin≥ 33 p.u.) are displayed in Figure 12.

During “Category 5” days, the benefit of geographic
dispersion becomes apparent especially for plants with a

capacity beyond 30MW. Observed maximum ramp rates
from the 80 and 48MWAC plants are ~0.4 and ~0.5 p.u.,
respectively, with the first showing only two occurrences
of ramps above 0.34 p.u. In Figure 13, RR60s,max are plot-
ted as a function of the plants’ shortest sides, L. According
to the basic model introduced earlier, the RR60s,max for
plants with L= 3000 m (> 150 MW) would generate ramps
of up to ~0.2 p.u. at 25m/s cloud velocity, further decreas-
ing as L increases. For now, we set two arbitrary cloud
velocities to show the effect of L on RR60s,max but a
follow-up study is needed with cloud velocity data to
validate the effect of V and L together.

8. CONCLUSIONS

The variability of utility-scale solar PV plants is a cause of
concern for grid operators as numerous large-scale
(>250MW) PV plants are coming online. More specifi-
cally, grid operators are concerned about the very short-
term ramp rates exhibited by PV plants.

Generally, it is believed that the short-term ramp rates
become attenuated as the size of the plant increases. At
the time of writing, the effect of geographic dispersion on
the observed ramp rates has been studied primarily with
several small PV systems or point-irradiance sensors dis-
persed over a large area. This smoothing effect was not
previously validated for fixed-tilt multi-megawatt plants.
In this study, we demonstrated this phenomenon on the
basis of actual 1min-averaged power output data from
six PV plants ranging in size from 5 to 80MW located in
the southwest of the USA and southeast Canada.

The maximum ramp rates observed in this study are
typically higher than those found by the studies shown in
Table I (0.7 p.u. for the 5MW plant versus 0.5 p.u. for a
4.6MW plant published by Hansen [16]). This is likely
due to the fact that the data set used here covers more days

Figure 10. Second and minute ramps observed from a 5 and
80MW plant in Ontario, Canada.

Figure 11. Using the DARR categorization based on a single ir-
radiance sensor, the ramp rates at the 80MW plant are visual-
ized with cumulative distribution functions for each category of

day in the period January–June 2011.

Figure 12. Cumulative probability function of observed ramp rates
across all plants in the portfolio for “Category 5” days (DARR> 33)
in January–June of 2011. For reference, we show the curve of ramp
rates observed from a point irradiance sensor at the 80MW plant.
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than others, which makes it more probable that high ramp
rates are included in the data.

We show a reduction in observed RR60s,3s (1min normal-
ized absolute ramp rates, 3s probability) from 0.47 to 0.25p.u.
for the 5MW plant versus the 80MW plant on most variable
“Category 5” days.

Employing data from the 48MW plant, we demonstrated
that irradiance sensor data can be used for estimatingminute-
averaged extreme ramp rates (RR60s,max) provided that multi-
ple sensors are adequately distributed over the virtual plant
and that the data are properly clipped to account for limited
inverter output. Extreme ramp rates were estimated from
clipped data with an error <3% between RR60s,3s and
RR60s,max compared with a 10% error for unclipped data.

The effect of geographic dispersion was demonstrated
using the “inverter shells method,” wherein variability
was assessed in each step of a plant growing from 0.5 to
32MW. Extreme ramp rates (RR60s,max) decreased from
0.87 to 0.67 p.u., respectively, whereas RR60s,3s decreased
more rapidly with L from 0.56 to 0.24 p.u., which is in line
with the probabilistic theory of wind/cloud speed occur-
rence and shortest plant side L

To support comparisons of fluctuations in power output
across multiple sites with different weather conditions, we
introduced the DARR as a metric to summarize daily
variability from a single irradiance sensor. Five categories
were defined, ranging from stable days (Category 1) to
highly variable days (Category 5). All plant days in the
portfolio were distributed across these categories, and
ramp rates observed in Category 5 days were compared
for all plants. It was shown that absolute ramp rates
decrease as plant size increases. A simple model was
used to estimate extreme ramp rates; our results were
shown to give a good indication of the highest observed
ramps. Further efforts will be put into validation of the
model with data on cloud velocity and a distribution of
cloud sizes.

9. FURTHER RESEARCH NEEDS

In this study, we used a time scale of 1min as the period
over which power output was averaged. However, a series
of power-output data were found across the plant portfolio
that contained sequences of alternating ramp rate signs
(Figure 6), implying that sub-minute fluctuations could
have occurred. Therefore, the ramp that was recorded
could have been higher or lower if the time-averaging
period started 30 s earlier than it did. A follow-up study
using a higher time resolution could give insight into what
time scale is necessary to capture all output fluctuations;
this is likely to depend heavily on the plant size and
weather conditions.

It is evident that the DARR, as a variability summariz-
ing metric, does not capture the individual ramp rates that
occur during the day. Therefore, it can only give a potential
measure to determine the level of spinning reserves capac-
ity necessary to balance ramping. Also, the metric can
perhaps be adjusted for length of day and peak irradiance,
as winter days are shorter than summer days and reach
lower peak irradiance under clear sky conditions. Further
research is needed using day-ahead forecasting measures
to assess what DARR category is expected and during
what time of the day variability is expected. Also, investi-
gations are needed to identify the ramps as a function of
observed cloud size, opacity, and velocity. With this infor-
mation, one can validate and expand the theory introduced
here for estimating extreme ramp rates as a function of
cloud velocity and plant size. Finally, it would be interest-
ing to analyze how the ramps of other PV technologies
would differ from that of CdTe, considering the differences
in spectral response and efficiency.

ACKNOWLEDGEMENTS

Special thanks to First Solar for making data available to
this study and for their summer internship program. Also,
the authors would like to acknowledge John Bellacicco
and their fellow research group members at the Center
for Life-Cycle Analysis (especially Daniel Wolf) for the
valuable inputs and brainstorm sessions.

REFERENCES

1. Danish Energy Agency. Energy Statistics 2009. Energy.
Copenhagen. 2010. Retrieved from http://www.ens.dk/
en-US/Info/FactsAndFigures/Energy_statistics_and_
indicators/Annual Statistics/Documents/Energi Statistics
2009.pdf, Accessed: 10 November 2011.

2. German Energy Ministry. Erneuerbare Energien 2010.
Vierteljahrshefte zur Wirtschaftsforschung 2011; 76.
DOI: 10.3790/vjh.76.1.35

3. Ekman CK. On the synergy between large electric
vehicle fleet and high wind penetration—an analysis
of the Danish case. Renewable Energy 2010; 36(2):

Figure 13. Observed maximum ramp rates for different sized
plants and sub-plants using the inverter shells method and time
averaging period=60s. The two lines represent the theoretical

maxima from Figure 2, for V=35 and 25m/s.

Assessment of variability from utility-scale solar PV plantsR. van Haaren, M. Morjaria and V. Fthenakis

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip

http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf
http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf
http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf
http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf


546–553. Elsevier Ltd. DOI: 10.1016/j.renene.2010.
08.001

4. Lew D, Miller N, Clark K, Jordan G. Impact of high so-
lar penetration in the western interconnection. National
Renewable Energy Agency, December 2010. Retrieved
from: http://www.nrel.gov/wind/systemsintegration/
pdfs/2010/lew_solar_impact_western.pdf

5. Nikolakakis T, Fthenakis V. The optimummix of elec-
tricity from wind- and solar-sources in conventional
power systems: evaluating the case forNewYorkState.
Energy Policy 2011; 1–9. Elsevier. DOI: 10.1016/j.
enpol.2011.05.052

6. Ummels BC, Gibescu M, Pelgrum E, Kling WL, Brand
AJ. Impacts of wind power on thermal generation unit
commitment and dispatch. IEEE Transactions on
Energy Conversion 2007; 22(1): 44–51. DOI: 10.1109/
TEC.2006.889616

7. Denholm P, Margolis RM. Evaluating the limits of
solar photovoltaics (PV) in electric power systems
utilizing energy storage and other enabling technolo-
gies. Energy Policy 2007; 35(9): 4424–4433. Elsevier.
DOI: 10.1016/j.enpol.2007.03.004

8. Red Electrica De Espana. Red Electrica De Espana.
2010. Retrieved from http://www.ree.es/

9. Gansler R, Klein S, Beckman W. Investigation of minute
solar radiation data. Solar Energy 1995; 55(1): 21–27.
Elsevier. Retrieved from http://linkinghub.elsevier.com/
retrieve/pii/0038092X9500025M

10. Jurado M. Statistical distribution of the clearness index
with radiation data integrated over five minute intervals.
Solar Energy 1995; 55(6): 469–473. DOI: 10.1016/
0038-092X(95)00067-2

11. Suehrcke H, McCormick P. Solar radiation utiliz-
ability. Solar energy 2010; 43(6): 339–345.
Elsevier. Retrieved from http://linkinghub.elsevier.
com/retrieve/pii/0038092X89901047

12. Mills A, Wiser R. Implications of wide-area
geographic diversity for short-term variability of solar
power. Berkeley Lab, September 2010. Retrieved from
http://eetd.lbl.gov/ea/ems/reports/lbnl-3884e.pdf

13. Hoff TE, Perez R. Quantifying PV power output
variability. Solar Energy 2010; 84(10): 1782–1793.
Elsevier Ltd. DOI: 10.1016/j.solener.2010.07.003

14. Stein JS. PV output variability, characterization and
modeling. Integration of Renewable and Distributed
Energy Resources. Albuquerque, NM: Sandia National
Laboratories. 2010.

15. Wiemken E, Beyer HG, Heydenreich W, Kiefer K.
Power characteristics of PV ensembles: experiences
from the combined power production of 100 grid
connected PV systems distributed over the area of
Germany. Solar Energy 2001; 70(6): 513–518. DOI:
10.1016/S0038-092X(00)00146-8

16. Hansen T. Utility solar generation valuation methods.
Chemical record (New York, N.Y.) 2011; 11. Tucson,
AZ. DOI: 10.1002/tcr.201190008

17. Curtright AE, Apt J. The character of power
output from utility-scale photovoltaic systems. Power
(September 2007) 2008; 241–247. DOI: 10.1002/pip

18. Kankiewicz A, Sengupta M, Moon D. Observed
impacts of transient clouds on utility-scale PV fields.
Solar 2010 Conference Proceedings (Vol. 2009).
American Solar Energy Society first. 2010.

19. Lenox C. Variability in a large-scale PV installation.
Utility-scale PV Variability Workshop. Cedar Rapids,
IA: NREL. 2009.

20. Blatchford,J. Telephone interview James Blatchford.
2011; interview date: 4 August 2011.

21. Mills A, Ahlstrom M, Brower M, Ellis A, George R,
Hoff T, Kroposki B, et al. Dark shadows. IEEE
Power and Energy Magazine June 2011; 33–41.
Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5753337

22. Perez R, Hoff TE, Schlemmer J, Kivalov S, Hemker
KJ. Short-Term Irradiance Variability—Station Pair
Correlation as a Function of Distance. American
Solar Energy Society Annual Conference: Raleigh,
NC, 2011.

23. Murata A, Yamaguchi H, Otani K. A method of esti-
mating the output fluctuation of many photovoltaic
power generation systems dispersed in a wide area.
Electrical Engineering in Japan 2009; 166(4): 9–19.
DOI: 10.1002/eej.20723

24. Horváth Á, Davies R. Feasibility and error analysis of
cloud motion wind extraction from near-simultaneous
multiangle MISR measurements. Journal of Atmo-
spheric and Oceanic Technology 2001; 18(4): 591–608.
Retrieved from http://journals.ametsoc.org/doi/abs/
10.1175/1520-0426 (2001)018%3C0591%3AFAEAOC%
3E2.0.CO%3B2

25. Plank VG. The size distribution of cumulus clouds in
representative Florida populations. Journal of Applied
Meteorology 1969; 8: 46–67. Retrieved from http://
adsabs.harvard.edu/abs/1969JApMe. . .8. . .46P

26. Lave M, Kleissl J. Testing a wavelet-based variability
model (WVM) for solar PV power plants. Power and
Energy Society. Conference Proceedings, 2011.

27. Kawasaki N, Oozeki T, Otani K, Kurokawa K. An
evaluation method of the fluctuation characteristics of
photovoltaic systems by using frequency analysis. Solar
Energy Materials and Solar Cells 2006; 90(18–19):
3356–3363. DOI: 10.1016/j.solmat.2006.02.034

28. Lave M, Kleissl J. Solar variability of four sites across
the state of Colorado. Renewable Energy 2010;
35(12): 2867–2873. Elsevier Ltd. DOI: 10.1016/j.
renene.2010.05.013

Assessment of variability from utility-scale solar PV plants R. van Haaren, M. Morjaria and V. Fthenakis

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip

http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf
http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual Statistics/Documents/Energi Statistics 2009.pdf
http://www.ree.es/
http://linkinghub.elsevier.com/retrieve/pii/0038092X9500025M
http://linkinghub.elsevier.com/retrieve/pii/0038092X9500025M
http://linkinghub.elsevier.com/retrieve/pii/0038092X89901047
http://linkinghub.elsevier.com/retrieve/pii/0038092X89901047
http://eetd.lbl.gov/ea/ems/reports/lbnl-3884e.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5753337
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5753337
http://journals.ametsoc.org/doi/abs/10.1175/1520-0426 (2001)018%3C0591%3AFAEAOC%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0426 (2001)018%3C0591%3AFAEAOC%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0426 (2001)018%3C0591%3AFAEAOC%3E2.0.CO%3B2
http://adsabs.harvard.edu/abs/1969JApMe
http://adsabs.harvard.edu/abs/1969JApMe

